The Absolutely Continuous Spectrum of the Almost Mathieu Operator

نویسنده

  • ARTUR AVILA
چکیده

We prove that the spectrum of the almost Mathieu operator is absolutely continuous if and only if the coupling is subcritical. This settles Problem 6 of Barry Simon’s list of Schrödinger operator problems for the twenty-first century.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute Continuity of the Integrated Density of States for the Almost Mathieu Operator with Non-critical Coupling

We show that the integrated density of states of the almost Mathieu operator is absolutely continuous if and only if the coupling is non-critical. We deduce for subcritical coupling that the spectrum is purely absolutely continuous for almost every phase, settling the measure-theoretical case of Problem 6 of Barry Simon’s list of Schrödinger operator problems for the twenty-first century.

متن کامل

Metal - insulator transition for the almost Mathieu operator

We prove that for Diophantine ω and almost every θ, the almost Mathieu operator, (Hω,λ,θΨ)(n) = Ψ(n+ 1) + Ψ(n− 1) +λ cos 2π(ωn+ θ)Ψ(n), exhibits localization for λ > 2 and purely absolutely continuous spectrum for λ < 2. This completes the proof of (a correct version of) the Aubry-André conjecture.

متن کامل

Lyapunov Exponents and Spectral Analysis of Ergodic Schrödinger Operators: a Survey of Kotani Theory and Its Applications

The absolutely continuous spectrum of an ergodic family of onedimensional Schrödinger operators is completely determined by the Lyapunov exponent as shown by Ishii, Kotani and Pastur. Moreover, the part of the theory developed by Kotani gives powerful tools for proving the absence of absolutely continuous spectrum, the presence of absolutely continuous spectrum, and even the presence of purely ...

متن کامل

Reducibility or Non-uniform Hyperbolicity for Quasiperiodic Schrödinger Cocycles

We show that for almost every frequency α ∈ R\Q, for every Cω potential v : R/Z→ R, and for almost every energy E the corresponding quasiperiodic Schrödinger cocycle is either reducible or non-uniformly hyperbolic. This result gives a very good control on the absolutely continuous part of the spectrum of the corresponding quasiperiodic Schrödinger operator, and allows us to complete the proof o...

متن کامل

Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles

We show that for almost every frequency α ∈ R\Q, for every Cω potential v : R/Z → R, and for almost every energy E the corresponding quasiperiodic Schrödinger cocycle is either reducible or nonuniformly hyperbolic. This result gives very good control on the absolutely continuous part of the spectrum of the corresponding quasiperiodic Schrödinger operator, and allows us to complete the proof of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008